
REPRESENTATIVE ARM IDENTIFICATION: A FIXED CONFIDENCE
APPROACH TO IDENTIFY CLUSTER REPRESENTATIVES

Sarvesh Gharat ∗

Centre for Machine Intelligence and Data Science
IIT Bombay

Aniket Yadav
Centre for Machine Intelligence and Data Science

IIT Bombay

Nikhil Karamchandani
Department of Electrical Engineering

IIT Bombay

Jayakrishnan Nair
Department of Electrical Engineering

IIT Bombay

August 27, 2024

ABSTRACT

We study the representative arm identification (RAI) problem in the multi-armed bandits (MAB)
framework, wherein we have a collection of arms, each associated with an unknown reward distribu-
tion. An underlying instance is defined by a partitioning of the arms into clusters of predefined sizes,
such that for any j > i, all arms in cluster i have a larger mean reward than those in cluster j. The
goal in RAI is to reliably identify a certain prespecified number of arms from each cluster, while using
as few arm pulls as possible. The RAI problem covers as special cases several well-studied MAB
problems such as identifying the best arm or any M out of the top K, as well as both full and coarse
ranking. We start by providing an instance-dependent lower bound on the sample complexity of any
feasible algorithm for this setting. We then propose two algorithms, based on the idea of confidence
intervals, and provide high probability upper bounds on their sample complexity, which orderwise
match the lower bound. Finally, we do an empirical comparison of both algorithms along with
an LUCB-type alternative on both synthetic and real-world datasets, and demonstrate the superior
performance of our proposed schemes in most cases.

1 Introduction

The stochastic multi-armed bandit (MAB) problem [1] is a widely studied online decision-making framework, which
consists of K arms each associated with an a priori unknown reward distribution. Each pull of an arm results in a
random reward, generated i.i.d. from the associated distribution. At each round, the learner can decide which arm to
pull based on the entire history of pulls and rewards. The MAB framework has found application in a wide variety
of domains ranging from A/B testing [2] and online advertising [3] to network routing [4], clinical testing [5], and
hyperparameter optimization [6] in machine learning.

There are several objectives that a learner might be interested in while interacting with the MAB. For example, one
widely studied goal is to maximize the expected cumulative reward accrued by the learner over a certain time horizon,
or equivalently to minimize the regret with respect to an oracle which knows the arm reward distributions beforehand.
Several regret minimization algorithms have been proposed in the literature [7, 8], and they are typically based on the
idea of balancing exploration (trying different arms to reduce uncertainty about their mean rewards) and exploitation
(pulling the arms known to have high rewards).

Another popular learning objective is identifying the best arm in terms of the mean reward [9, 10]. The problem has
been studied in both the fixed confidence setting [10], where the goal is to find the best arm using the minimum number
of pulls while guaranteeing a certain pre-specified error probability δ; and the fixed budget setting [11] where the total

∗sarveshgharat19@gmail.com

ar
X

iv
:2

40
8.

14
19

5v
1

 [
cs

.L
G

]
 2

6
A

ug
 2

02
4

A PREPRINT - AUGUST 27, 2024

number of pulls is fixed beforehand and the aim is to minimize the probability of error. In our work, we will focus on
the fixed confidence setting. Several such pure exploration problems beyond best arm identification have been studied
in the literature, including identifying the top K arms [12] or the arms with mean rewards above a given threshold [13].
These problems can often require a very large number of samples to solve, which makes them impractical for many
applications of interest. One way of rectifying this shortcoming is to relax the objective, for example to identifying
an ϵ-best arm [14] whose mean reward is within some small ϵ gap to the best arm, or any M out of the top K arms
[15, 16], or any ‘good’ arm whose mean reward is above a threshold [17]. All the above relaxations can be treated as
MAB problems with multiple correct answers, which has been studied recently in [17] wherein a general lower bound
on the sample complexity and an asymptotically optimal (as error probability δ → 0) algorithm are provided.

Along similar lines, in this work, we propose the Representative Arm Identification (RAI) problem for which an
underlying MAB instance is defined by a partitioning of the arms into clusters of predefined sizes, such that for any
j > i, all arms in cluster i have a larger mean reward than those in cluster j. The goal in RAI is to reliably identify a
certain prespecified number of arms from each cluster, while using as few arm pulls as possible. The RAI problem
naturally arises in several real-world applications. For example, consider a crowdsourcing platform which engages a
collection of workers with apriori unknown skill levels. Say, the platform is hired to solve a large task, which can be
broken into multiple sub-tasks of differing complexity. Then the platform might want to hire some workers amongst the
best few to tackle the hard subtasks, some with around average skill level to deal with subtasks of medium hardness,
and then a few with the lowest skill level to handle the easiest subtasks. Another application of the RAI problem is in
online recommendation systems, for example a content creator might be interested in knowing a few movies amongst
the best rated, and also some amongst the worst rated on the platform.

Beyond several natural applications, the RAI problem is also interesting from a theoretical viewpoint since it covers as
special cases several well-studied MAB problems such as best arm identification [10] or identifying any M out of the
top K arms [16], as well as both full and coarse ranking [18], and is able to provide a unifying viewpoint for all these
problems; see Table 1 for a list of such problems. We are able to provide a lower bound on the sample complexity of
the general RAI problem, in terms of a quantity we call the ‘bottleneck gap’ which depends on the underlying instance
and the arms requirements, and encodes the hardness of the problem. We also present two algorithms, based on the
idea of confidence intervals, for reliably solving any RAI problem and provide high probability upper bounds on the
sample complexity of these schemes. Finally, we conduct an empirical comparison of both our algorithms along with
a LUCB-type baseline on both synthetic and real-world datasets, and demonstrate the superior performance of our
proposed schemes in most cases.

2 Problem Formulation

We consider a stochastic multi-armed bandit with a collection N of N = |N | arms, each associated with a 1
2 -

subGaussian reward distribution2, which is a priori unknown to the learner.

To define the representative arm identification (RAI) problem, we sort the arms in decreasing order of their mean
rewards and then partition them into m clusters of predefined sizes given by c = (c1, c2, · · · , cm), such that for any
j > i, all arms in cluster i have a larger mean reward than those in cluster j. Clearly,

∑m
i=1 ci = N.

We label the arms as follows: for each i ∈ [m] := {1, 2, . . . ,m} and j ∈ [ci] := {1, 2, . . . , ci}, we have an
associated reward distribution Πi

j with the j-th arm in cluster i, so that each pull of the arm results in an i.i.d.
reward sample from Πi

j . The corresponding mean reward is denoted by µi
j , and we have that µi

j1
≥ µi

j2
for any

j1 ≥ j2. See Figure 1 for an illustration. We assume this partition of arms into clusters is uniquely defined, i.e., if
i1 ̸= i2, ∄ j1, j2 such that µi1

j1
= µi2

j2
.

2A random variable X is σ-subGaussian if, for any t > 0, P (|X − E[X]| > t) ≤ 2 exp
(
−t2/2σ2

)
.

2

A PREPRINT - AUGUST 27, 2024

Figure 1: An RAI problem instance with m = 6 clusters, c = (4, 5, 5, 3, 2, 2), and r = (2, 3, 1, 2, 0, 1). The circled
arms illustrate one of the correct outputs for this problem.

Finally, we have a prespecified vector r = (r1, r2, . . . , rm) such that 0 ≤ ri ≤ ci for all i, and where ri denotes the
number of ‘representative’ arms belonging to cluster i that the learner needs to identify. As mentioned before, the RAI
problem covers a wide range of very well-studied MAB problems, ranging from the best arm identification problem,
where c = (1, N − 1), r = (1, 0), to full ranking, where c = (1, 1, · · · , 1), r = (1, 1, · · · , 1). Table 1 lists several
classical learning tasks from the literature that are special cases of the RAI problem. An important aspect of the RAI
problem is that there can be multiple correct answers; specifically, this is the case if 0 < ri < ci for some i ∈ [m].

To summarize, an instance of the RAI problem is defined by I = (c, r,Π), where Π = (Πi
j , i ∈ [m], j ∈ [ci]). To

perform the RAI task, the learner can use an online algorithm, say A, which at each time can either choose an arm to
sample based on past observations; or decide to stop and output an estimated collection of representative arms from
each cluster, given by (Oi, i ∈ [m]); here, Oi denotes the set of representatives from cluster i, with |Oi| = ri. Given a
prespecified error threshold δ ∈ (0, 1), we say that the algorithm A is δ-probably correct (δ-PC) if, for any underlying
problem instance I , the probability that algorithm output is incorrect is at most δ. More formally, denoting the (random)
stopping time of the algorithm A by T I

δ (A), A is δ-PC if, for any instance I,

P
(
T I
δ (A) <∞, ∃ i ∈ [m] and j ∈ Oi s.t. arm j is not in cluster i

)
≤ δ.

The performance of a δ-PC algorithm A is captured via its sample complexity T I
δ (A), i.e., the number of arm pulls

it makes before stopping. Our goal in this paper is to design δ-PC schemes for the RAI problem, whose sample
complexity T I

δ (A) is as small as possible. Note that T I
δ (A) is itself a random quantity, and our results will be in terms

of expectation or high probability bounds.

Table 1: MAB problems from the literature that are special cases of the RAI problem

Task Number of Clusters c r

Best Arm Identification [9] 2 (1, N − 1) (1, 0)
One out of Top K [15] 2 (K,N −K) (1, 0)
Top K arm identification [12] 2 (K,N −K) (K, 0)
M out of Top K [16] 2 (K,N −K) (M, 0)
Coarse Ranking [18] m (c1, c2, · · · , cm) (c1, c2, · · · , cm)
Full Ranking [18] N (1, 1, · · · , 1) (1, 1, · · · , 1)

3 Lower Bound

In this section, we derive a lower bound on the sample complexity of any δ-PC algorithm for the RAI problem. To state
the result, we first need a few definitions.
Definition 1. (Arm Gap): Consider an instance I = (c, r,Π); recall that µi

j denotes the mean reward of the jth arm in
cluster i. The arm gap ∆i

j for that arm is defined as

∆i
j := min{µi−1

ci−1
− µi

j , µ
i
j − µi+1

1 }, ∀j ∈ ci, i ∈ [m].

Here, for notational simplicity, we have assumed two dummy clusters, 0 and m+ 1, having one arm each, such that
µ0
1 =∞, µm+1

1 = −∞.

3

A PREPRINT - AUGUST 27, 2024

In words, ∆i
j represents the the gap (in mean reward) between the jth arm in cluster i and the ‘nearest’ arm in a

neighboring cluster.

Next, we define the bottleneck gap associated with an instance.

Definition 2. (Bottleneck Gap): Consider an instance I = (c, r,Π). For each cluster i ∈ [m], let ∆i
I denote the ri-th

largest arm gap amongst its arms. By convention, ∆i
I = ∞ if ri = 0. The bottleneck gap ∆I associated with the

instance I is defined as
∆I := min{∆1

I ,∆
2
I , · · · ,∆m

I }.

Intuitively, ∆i
I captures the complexity associated with the sub-task of identifying ri arms from cluster i, while ∆I

captures the complexity associated with the complete RAI task; the smaller these gaps, the harder the corresponding
task. This is formalized in the following theorem.

Theorem 1. For a given error threshold δ ∈ (0, 1), in the space of 1
2 -Gaussian instances (i.e., each arm has a Gaussian

reward distribution with standard deviation σ = 1
2), any δ-PC algorithm A for the RAI problem satisfies

lim inf
δ→0

E[T I
δ (A)]

log(1/δ)
≥ 1

2(∆I)2

The proof of Theorem 1 is provided in Appendix A. As mentioned before, the RAI problem falls in the class of MAB
problems with multiple correct answers and as such, the general lower bound provided in [17] applies to the RAI
problem as well. While the lower bound in [17] is in the form of a minminmax optimization problem, the result
above specializes it to the RAI problem, and also relaxes it to provide a simpler, more interpretable bound in terms
of the bottleneck gap of the underlying instance. While the lower bound in Theorem 1 is in general looser than the
(less explicit) bound that follows from [17], it captures the core complexity of the RAI task, and also enables a direct
comparison to upper bounds on the sample complexity of our proposed algorithms (see Section 4).

We conclude this section by specializing the lower bound in Theorem 1 to the task of identifying M out of the
top K arms, where 1 ≤ M ≤ K < N (this special case of the RAI problem was analysed in [16]).3 Without
loss of generality, suppose that the arms are also labelled 1, 2, . . . , N such that the corresponding mean rewards
satisfy µ1 ≥ µ2 ≥ · · · ≥ µN . Then it is easy to show that the bottleneck gap for this task is given by ∆I = µM−µK+1.
To the best of our knowledge, such an explicit, interpretable, instance-dependent complexity characterization is not
available in the literature for this task.

4 Algorithms

This section describes the two algorithms we propose to solve the RAI problem and presents upper bounds on their
sample complexity. In spirit, these algorithms are similar to the successive elimination style schemes which are
widely used for MAB problems [10]. Under both algorithms, active arms are pulled in a round robin fashion, and
suitable confidence intervals are maintained for the mean reward of each active arm. From time to time, arms whose
membership in a certain cluster can be inferred based on the computed confidence intervals are ‘selected’ to be part of
the algorithm output; these selected arms are then removed from the active set. The two algorithms differ with respect
to the scheduling of the membership check—the Vanilla Round Robin Algorithm performs this check after each round
robin cycle, whereas the Butterscotch Round Robin Algorithm performs the membership check only on each halving of
the confidence interval widths.

Vanilla Round Robin Algorithm for RAI

The Vanilla Round Robin Algorithm is stated formally as Algorithm 1. This algorithm proceeds in rounds; each round
involves the following steps:

• The algorithm samples every arm in its active set A once (line 4); this is the set of arms whose cluster
membership is not yet confirmed.

• The arms in A are then partitioned into tentative clusters of sizes c̃1, · · · , c̃m based on their empirical mean
rewards (line 6); here, c̃i is the (estimated) number of active arms from cluster i (more formally, c̃i = ci−|Oi|,
where Oi denotes the set of representative arms that have been identified by the algorithm as being from
cluster i by that point).

3Note that this task further subsumes other classical tasks like best arm identification (M = K = 1), and the identification of
one of the top K arms (analysed in [15]) as special cases.

4

A PREPRINT - AUGUST 27, 2024

Algorithm 1 Vanilla Round Robin Algorithm for RAI
Input: cluster sizes c = (c1, c2, · · · , cm), required arms r = (r1, r2, · · · , rm), arm set N , error threshold δ
Output: O1, O2, · · · , Om

1: Initialize R← 0, A← N , and for i ∈ {1, 2, · · · ,m} set c̃i = ci
2: while |O1| ≠ r1 or |O2| ≠ r2 or · · · |Om| ≠ rm do
3: Increment R by 1
4: Sample every arm in A once
5: Update empirical mean rewards
6: Partition A into clusters A1, A2, · · · , Am of sizes c̃1, c̃2, · · · , c̃m respectively, based on the empirical means
7: for i in [m] do
8: for arm a in Ai do

9: Better(a) =

{
j ∈ ∪j<iAj : µ̂j − µ̂a > 2

√
ln(π2R2N/3δ)

2R

}
10: Worse(a) =

{
j ∈ ∪j>iAj : µ̂a − µ̂j > 2

√
ln(π2R2N/3δ)

2R

}
11: if |Better(a)| ≥

∑
j<i c̃j and |Worse(a)| ≥

∑
j>i c̃j then

12: if |Oi| < ri then
13: Add arm a to Oi

14: end if
15: Remove arm a from A
16: c̃i ← c̃i − 1
17: end if
18: end for
19: if i > 1 and |Oi−1| = ri−1 and |Oi| = ri then
20: c̃i ← c̃i−1 + c̃i
21: c̃i−1 ← 0
22: end if
23: end for
24: end while

• Next, for each arm a in the active set, a check is made to see whether its cluster assignment, say i, can be
finalised. This entails checking whether the confidence intervals indicate arm a as being ‘better’ than

∑
j>i c̃i

active arms, and ‘worse’ than
∑

j<i c̃i active arms (line 11). If this holds, arm a is assigned to cluster i (if
additional representatives are required from cluster i), and it is removed from the active set.

• Finally, we merge adjacent clusters whose requirement for representative arms has been met (lines 19–22).
Such a merger relaxes the membership check for the merged cluster (note that the algorithm does not need
to output any arms from the merged cluster), hastening the removal of its members from the active set.
Empirically, we find that this final step results in significantly fewer arm pulls by the algorithm, as we
demonstrate in Section 5.

Of course, the algorithm terminates when the requisite number of representatives have been identified from each
cluster. The following result establishes that the Vanilla Round Robin Algorithm is δ-PC, and also provides an
instance-dependent high probability upper bound on the sample complexity of the algorithm.
Theorem 2. The Vanilla Round Robin Algorithm (see Algorithm 1) is δ-PC for the RAI problem. With probability at
least 1− δ, its sample complexity T I

δ satisfies

T I
δ ≤

m∑
i=1

ci∑
j=1

(
1{∆i

j ≥ ∆I}
26

(∆i
j)

2
ln

(
16π

√
N

3δ
(∆i

j)
2

)
+ 1{∆i

j < ∆I}
26

(∆I)2
ln

(
16π

√
N

3δ
(∆I)2

)
+ 1

)
.

We make the following remarks on the high probability upper bound on the stopping time under Algorithm 1. First, the
dependence on the vector of required arms r is implicit through the definition of the bottleneck distance ∆I . Secondly,
the expression includes a summation over all the arms, each term capturing an upper bound on the number of rounds
that arm is pulled. Intuitively, arms for which the gap ∆i

j (as defined in Definition 1) exceeds the bottleneck gap ∆I
are most likely to be assigned to their respective clusters by the algorithm; the number of rounds these arms remain
active is (with high probability) inversely proportional to (∆i

j)
2. On the other hand, arms whose gap ∆i

j is less than the

5

A PREPRINT - AUGUST 27, 2024

Algorithm 2 Butterscotch Round Robin Algorithm for RAI
Input: cluster sizes c = (c1, c2, · · · , cm), required arms r = (r1, r2, · · · , rm), arm set N , error threshold δ
Output: O1, O2, · · · , Om

1: Initialize R← 0, A← N , and for i ∈ {1, 2, · · · ,m} set c̃i = ci

2: Set t0 = 0 and tR = 2(2R+5) ln
(π2R2N

3δ

)
3: while |O1| ≠ r1 or |O2| ≠ r2 or · · · |Om| ≠ rm do
4: Increment R by 1
5: Sample every arm in A tR − tR−1 times
6: Update empirical mean rewards
7: Partition A into clusters A1, A2, · · · , Am of sizes c̃1, c̃2, · · · , c̃m respectively, based on the empirical means
8: for i in [m] do
9: for arm a in Ai do

10: Better(a) =
{
j ∈ ∪j<iAj : µ̂j − µ̂a > 2−(R+2)

}
11: Worse(a) =

{
j ∈ ∪j>iAj : µ̂a − µ̂j > 2−(R+2)

}
12: if |Better(a)| ≥

∑
j<i c̃j and |Worse(a)| ≥

∑
j>i c̃j then

13: if |Oi| < ri then
14: Add arm a to Oi

15: end if
16: Remove arm a from A
17: c̃i ← c̃i − 1
18: end if
19: end for
20: if i > 1 and |Oi−1| = ri−1 and |Oi| = ri then
21: c̃i ← c̃i−1 + c̃i
22: c̃i−1 ← 0
23: end if
24: end for
25: end while

bottleneck gap ∆I are most likely to remain active (i.e., not assigned to their respective clusters) until the algorithm
stops; the number of rounds the algorithm needs to terminate being (with high probability) inversely proportional to
(∆I)

2. Finally, note that this bound is ‘order-wise’ consistent with the information theoretic lower bound in Theorem 1;
both bounds exhibit an inverse proportionality to the square of the bottleneck gap. This suggests that the Vanilla Round
Robin Algorithm is near optimal.4

Butterscotch Round Robin Algorithm for RAI

Next, we discuss the Butterscotch Round Robin Algorithm, stated formally as Algorithm 2. The key difference from the
Vanilla Algorithm discussed before is that the arm pulls are conducted in batches (line 5). Specifically, in round R,
each arm in the active set A is pulled tR − tR−1 times, where the value of tR is chosen (line 2) so that the confidence
interval for the mean reward of each arm in A is of size ∝ 2−R. This is reflected in the confidence-interval based cluster
membership check conducted in line 10. The rest of Algorithm 2 proceeds in essentially the same way as Algorithm 1.

The structure of Algorithm 2 is inspired by the scheme proposed in [14] for the best arm identification problem, where
it is shown that the batch property enables tighter confidence intervals and consequently a better upper bound on the
sample complexity as compared to standard successive elimination based schemes. We find that something similar is
true for the RAI problem as well, as illustrated by the following result and the discussion thereafter.

Theorem 3. The Butterscotch Round Robin Algorithm (see Algorithm 2) is δ-PC for the RAI problem. With probability
at least 1− δ, its sample complexity T I

δ satisfies

T I
δ ≤

m∑
i=1

ci∑
j=1

(
1{∆i

j ≥ ∆I}max

(
32

(∆i
j)

2
ln

(
Nπ2

3δ

⌈
log2

(
1

2∆i
j

)⌉2)
, 128 ln

(
Nπ2

3δ

))

4The lower bound in Theorem 1 is on the expected stopping time, whereas the upper bound in Theorem 2 holds with high
probability; these quantities are not comparable strictly speaking. This ‘abuse’ is however standard in the analysis of confidence
interval based MAB algorithms (see [10]).

6

A PREPRINT - AUGUST 27, 2024

+1{∆i
j < ∆I}max

(
32

(∆I)2
ln

(
Nπ2

3δ

⌈
log2

(
1

2∆I

)⌉2))
, 128 ln

(
Nπ2

3δ

))
.

The bound above has a similar form to the one in Theorem 2. The main difference is that while the former has a
log(1/(arm gap)) (or log(1/∆I)) dependence, the latter has a term proportional to only log log(1/(arm gap)) (or
log log(1/∆I)). This potential improvement in sample complexity is due to the incorporation of batch pulling in
Algorithm 2, which allows us to relax the union bound requirements in the proof. The empirical performance of the two
algorithms is compared in Section 5. The proofs for Theorems 2 and 3 can be found in Appendix A. For each algorithm,
the proof has two components: showing that it is δ-PC and then deriving an upper bound on the sample complexity.

5 Numerical Case Studies

In this section, we conduct an empirical evaluation of Algorithms 1 and 2 using both synthetic and real-world datasets.
In addition, we also consider a suitably tailored version of LUCB-style sampling [12], which has been widely used
in the multi-armed bandit literature and offers a sequential sampling strategy as opposed to the parallel nature of the
successive elimination style strategies. In each round, the LUCB algorithm considers every empirical cluster for which
the arms requirement hasn’t yet been fulfilled and then based on the current confidence intervals of the mean estimates,
selects from each cluster an arm (together with the ‘boundary’ arms of the neighboring clusters) whose membership is
most likely to be confirmed with the additional pull; further details along with a proof that the proposed variant is δ-PC
are provided in Appendix B. For our simulations, we assume the reward distribution to be Bernoulli[0, 1], a member of
the 1/2 SubGaussian distribution family. Finally, we set the error probability δ = .01 and present sample complexity
results which are averaged over 100 independent runs of the corresponding algorithms.

We first examine an instance with 10 arms divided into clusters of sizes 3, 5, and 2, respectively. The true means
for this instance are given by: [0.9, 0.85, 0.7, 0.66, 0.65, 0.6, 0.4, 0.35, 0.2, 0.15]. Table 2 presents the average sample
complexity of the three algorithms for various special cases of the RAI problem.

Table 2: Comparision of sample complexity between Algorithm 1, Algorithm 2, and an LUCB-style scheme for various
instantiations of the RAI problem

Sr.no Task Required Arms Vanilla Butterscotch LUCB
1 One arm from top cluster (1, 0, 0) 4588 10370 3634
2 Identify top cluster (3, 0, 0) 48632 31757 63802
3 2 arms each from top 2 clusters (2, 2, 0) 8958 10370 19444
4 Identify center cluster (0, 5, 0) 56730 50142 61302
5 One arm from worst cluster (0, 0, 1) 8913 10370 9257

We observe that in almost all the cases, the Vanilla and Butterscotch schemes perform better than the LUCB-based
algorithm. Intuitively, this is because the LUCB algorithm inherently targets sequential membership identification of
arms which can lead to many unnecessary pulls for the boundary arms especially when the number of required arms is
higher. Secondly, between the Vanilla and Butterscotch algorithms, the former performs better in Problems 1, 3, 5 while
the latter is superior for Problems 2, 4. Problems 1, 3, 5 turn out to be simpler problems that require only one round of
the Butterscotch scheme (which is why the sample complexity is also the same for all three problems), while the Vanilla
algorithm requires even fewer since it can stop at any time and does not have a batch constraint.

Both Algorithms 1 and 2 employ adaptive merging of clusters when the representative arm requirement for neighboring
clusters is found to be already satisfied. To demonstrate the benefit of this feature, we conduct an empirical comparison
of both algorithms with their corresponding non-merging versions, as shown in Table 3. The underlying bandit instance
and the problems considered are the same as those in Table 2.

7

A PREPRINT - AUGUST 27, 2024

(a) (b)

(c) (d)

(e) (f)

Figure 2: Comparision of sample complexity between Algorithm 1, Algorithm 2, and an LUCB-style scheme for special
cases of the RAI problem, over an instance created from the MovieLens dataset

Table 3: Comparison of sample complexity between Algorithms 1, 2 and their versions which do not use adaptive
merging of clusters

Sr.no Vanilla Vanilla (Non Merging) Butterscotch Butterscotch (Non Merging)
1 4588 6491 10370 10370
2 48632 50350 31757 44358
3 8958 10745 10370 10370
4 55932 56125 50162 51002
5 8913 10393 10370 10370

In addition to the synthetic dataset, we run our algorithms on the MovieLens dataset [19] which is a large database of
movies and corresponding user ratings. Out of the approximately 27, 000 movies in the dataset, we shortlist a set of 50

8

A PREPRINT - AUGUST 27, 2024

movies that have received the highest number of ratings. We consider the movies as arms and their average user rating
(normalized to [0,1]) as the corresponding mean reward. Each time we pull the arm associated with a movie, a random
reward is generated which corresponds to the rating from a randomly chosen user. We experiment with different values
of arms (N) ranging from 10 to 50, and consider all the special cases of the RAI problem stated in Table 1. These
include best arm identification; identifying 1, M , and all of the top K arms; and finally coarse and full ranking. We
select M and K to be 20% and 50% of N , respectively, and for the coarse ranking problem, the clusters are divided in
the ratio of 3 : 5 : 2. The results are presented in Figure 2.

From Figures 2(a),(b), the LUCB algorithm performs the best for the best arm and 1 out of the top K identification
problems. This is in line with our earlier observation over the synthetic dataset in Table 2 where we found LUCB to be
superior when the number of required arms is smaller. For the other four problems depicted in Figures 2(c),(d),(e),(f),
the Vanilla and Butterscotch algorithms are significantly better than LUCB. The Butterscotch algorithm almost always
performs the best, while providing a sizeable advantage over the Vanilla algorithm in many cases. The hardness of the
various problems under consideration is also easily visible from the results; for example, for the hardest problem, i.e.,
getting a full ranking of movies, the number of pulls required is the maximum and is much larger than the problem of
identifying 1 out of the top K movies.

6 Conclusion

We have proposed the representative arm identification (RAI) problem which generalizes several well studied problems
in multi-armed bandits, including best arm identification, identifying M out of the top K arms, and coarse ranking. We
provided a lower bound on the sample complexity of any reliable scheme and also proposed two algorithms based on
the idea of confidence intervals. Upper bounds on the sample complexity of these algorithms were presented and their
empirical performance was demonstrated over synthetic and real-world datasets.

Some questions remain open and several directions can be pursued in the future:

1. While Theorem 1 presents an instance-dependent and interpretable lower bound on the sample complexity of
the RAI problem, it is in general loose. On the other hand, [17] provides a lower bound on problems with
multiple correct answers (which includes the RAI problem) which can in general be tighter, but the bound is in
the form of an optimization problem and is hard to compare against. Deriving a tighter lower bound which
is still interpretable in terms of the problem parameters is a key open problem and can provide insights into
multiple problems of interest given the many special cases that RAI covers.

2. Federated RAI: In this version of the problem, we have multiple clients, each having its own mean reward
vector corresponding to the arms. Each client aims to solve its own local RAI problem, while a server which
can communicate with the clients (at some cost) might be interested in solving a global RAI problem. A
preliminary study of the problem indicates that a carefully crafted combination of the two algorithms proposed
in this work can be used to solve the federated RAI problem, while ensuring low communication cost.

References
[1] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
[2] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of a/b testing. In Conference on

Learning Theory, pages 461–481. PMLR, 2014.
[3] Tong Geng, Xiliang Lin, Harikesh S Nair, Jun Hao, Bin Xiang, and Shurui Fan. Comparison lift: Bandit-based

experimentation system for online advertising. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 15117–15126, 2021.

[4] Mohammad Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, and Mikael Johansson. Stochas-
tic online shortest path routing: The value of feedback. IEEE Transactions on Automatic Control, 63(4):915–930,
2017.

[5] Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design of clinical
trials: benefits and challenges. Statistical science: a review journal of the Institute of Mathematical Statistics,
30(2):199, 2015.

[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185):1–52,
2018.

[7] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of the ACM
(JACM), 64(5):1–24, 2017.

9

A PREPRINT - AUGUST 27, 2024

[8] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

[9] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification in multi-
armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

[10] Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-armed bandits in the fixed
confidence setting. In 2014 48th Annual Conference on Information Sciences and Systems (CISS), pages 1–6.
IEEE, 2014.

[11] Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In COLT-23th
Conference on learning theory-2010, pages 13–p, 2010.

[12] Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in stochastic
multi-armed bandits. In ICML, volume 12, pages 655–662, 2012.

[13] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the thresholding bandit
problem. In International Conference on Machine Learning, pages 1690–1698. PMLR, 2016.

[14] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits. In
International conference on machine learning, pages 1238–1246. PMLR, 2013.

[15] Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. Pac identification of a bandit arm relative to a reward
quantile. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[16] Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. Pac identification of many good arms in stochastic
multi-armed bandits. In International Conference on Machine Learning, pages 991–1000. PMLR, 2019.

[17] Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. Advances in Neural
Information Processing Systems, 32, 2019.

[18] Nikolai Karpov and Qin Zhang. Batched coarse ranking in multi-armed bandits. In Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[19] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Second workshop on information heterogeneity and fusion in
recommender systems (hetrec2011). In Proceedings of the fifth ACM conference on Recommender systems, pages
387–388, 2011.

[20] Kota Srinivas Reddy, PN Karthik, and Vincent YF Tan. Almost cost-free communication in federated best arm
identification. arXiv preprint arXiv:2208.09215, 2022.

[21] Faris Alzahrani and Ahmed Salem. Sharp bounds for the lambert w function. Integral Transforms and Special
Functions, 29(12):971–978, 2018.

10

A PREPRINT - AUGUST 27, 2024

A Proof of Theorems

Before proceeding with the proofs, let us state the necessary concentration inequality used in proving Theorem 2 and
Theorem 3
Lemma 1. Let X1, X2, · · · , XR ∈ 1

2−SubGaussian be independent and identical random variables. Than for the
empirical mean µ̂(R) =

∑R
i=1Xi/R we have

P (|µ̂(R)− µ| ≥ ϵR) ≤ 2 exp (−2Rϵ2R)

Proof of Lemma 1. From Hoeffdings inequality for any σ2−SubGaussian random variable, we have

P (|µ̂(R)− µ| ≥ ϵR) ≤ 2 exp

(
−Rϵ

2
R

2σ2

)
(1)

On substituting σ = 1
2 in Equation 1, for any 1

2−SubGaussian random variable, we get

P (|µ̂(R)− µ| ≥ ϵR) ≤ 2 exp
(
−2Rϵ2R

)
(2)

A.1 Proof of Theorem 1

The proof of the lower bound on expected sample complexity starts from recognizing that the RAI problem fits in the
‘multiple correct answers’ framework of [17] and thus the general lower bound derived there applies to the RAI problem
as well. However, that lower bound is in the form of a minminmax optimization problem and the rest of the proof
involves simplifying it to obtain an interpretable form.

To state the lower bound in [17], we have to introduce some additional notation. Consider an RAI problem instance
I = (c, r,Π), where the arm reward distributions are Gaussian with standard deviation 1/2 and the mean reward vector
is given by µ := {µj

i}, where µj
i is the mean reward for arm j from cluster i under the current instance. Let i∗[µ]

denote the set of all correct answers when the reward distributions are specified by µ. Note that each such correct
answer corresponds to a set of arms such that r1 of them belong to cluster 1, r2 of them belong to cluster 2 and so on.
Next, for any correct answer a ∈ i∗[µ], we need the notion of an alternate mean reward vector λ such that a is not a
correct answer when the underlying arm reward distributions are Gaussian with standard deviation 1/2 and the mean
reward vector is λ = {λji}. We will denote the collection of all such alternate mean reward vectors by ¬a. Finally, let
∆K denote the K-dimensional simplex and d(a, b) denote the Kullback-Leibler (KL) divergence between two Gaussian
distributions with means a and b, and variance 1/2 each. Note that d(a, b) = 2(a− b)2.

Next, from [17, Theorem 1], we have the following lower bound on the expected sample complexity of any δ-PC
algorithm for an RAI problem I = (c, r,Π), where the arm reward distributions are Gaussian with variance 1/2 and
the mean reward vector is given by µ := {µj

i}:

lim inf
δ→0

E[T I
δ (A)]

log(1/δ)
≥ D(I)−1 (3)

where D(I) = max
a∈i∗[µ]

max
w∈∆N

inf
λ∈¬a

∑m
i=1

∑ci
j=1 w

i
jd(µ

i
j , λ

i
j).

Now, we will derive an upper bound on D(I), which will yield the lower bound in the expression of Theorem 1.
Consider any given correct answer a ∈ i∗[µ]. Then, a particular alternate mean reward vector λ ∈ ¬a, can be
constructed by shifting the mean reward for any one arm included in a, say arm k, so that its cluster membership is
changed, and keeping all other mean rewards the same; see Figure 3 for an illustration. In particular, the minimum shift
needed to do so is given by the arm gap for arm k, as defined in Definition 1. Amongst all the arms included in a, we
will choose the one, say ba, which requires the smallest change in mean reward to result in an alternate mean reward
vector, i.e., for which the set of arms a is no longer a correct answer. Denote the corresponding change in the mean
reward of arm ba by la. Then we have

D(I) = max
a∈i∗[µ]

max
w∈∆N

inf
λ∈¬a

m∑
i=1

ci∑
j=1

wi
jd(µ

i
j , λ

i
j)

≤ max
a∈i∗[µ]

max
w∈∆N

wba2l
2
a

= max
a∈i∗[µ]

2l2a

11

A PREPRINT - AUGUST 27, 2024

= 2(∆I)
2

where the last equality follows by recognizing that amongst all the correct answers a ∈ i∗[µ], the one that will need the
biggest change in the mean reward of an arm to create an alternate reward distribution will be the one which contains
the following: r1 arms from cluster 1 with the highest arm gaps, r2 arms from cluster 2 with the highest arm gaps, and
so on; and the corresponding change will be equal to ∆I by Definition 2. Substituting the above bound in (3) completes
the proof of Theorem 1.

Figure 3: An illustration of alternate instance. In the given instance, the arms marked in green represent a set of correct
answers. Now, to form an alternate instance, we shift an arm from cluster 1 to cluster 2, placing it just behind the
boundary of cluster 2 in the given instance.

A.2 Proof of Theorem 2

The proof of this theorem is organized as follows. First, we define a good event ψ. Based on this condition, we then
demonstrate the correctness of Claims 1 and 2.

ψ ≜

{
∀R ∈ Z,∀i ∈ [m],∀j ∈ [ci], |µ̂i

j(R)− µi
j | ≤

√
ln(π2R2N/3δ)

2R

}
(4)

Claim 1. Under A = Alg1, let µ̂i
j(R) be the empirical mean of arm j from cluster i at round R. Let ψ be the event

defined in 4. Than the PA
I (ψ) ≥ 1− δ

Proof of Claim 1. By the union bound, we have

PA
I (ψc) ≤

∞∑
R=1

m∑
i=1

ci∑
j=1

PA
I

[
|µ̂i

j(R)− µi
j | >

√
ln(π2R2N/3δ)

2R

]
(5)

From Equation 2 and 5, we have

PA
I (ψc) ≤

∞∑
R=1

m∑
i=1

ci∑
j=1

6δ

π2R2N
(6)

≤
∞∑

R=1

6δ

π2R2
(7)

≤ δ (8)

12

A PREPRINT - AUGUST 27, 2024

Lemma 2. Let Ti,j be the time step of Alg1 in which the identity of the arm j from cluster i is identified, conditioned
on the good event (ψ), we have Ti,j ≤ T I

i,j where T I
i,j is defined as

T I
i,j =

26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1

Proof of Lemma 2. The proof of Lemma 2 follows a similar approach to that of Lemma 3 in [20], differing only in the
confidence intervals. However, for the reader’s convenience, we provide the complete proof of the lemma here.

Consider the Alg1 identifies an arm j from cluster i in time step Ti,j , then it must be the case that on the good event ψ,
the following holds true

min
{
µ̂i

arm(Ti,j)− µ̂i+1
1 (Ti,j), µ̂i−1

c̃i−1
(Ti,j)− µ̂i

arm(Ti,j)
}
≥ 2

√
ln(π2T 2

i,jN/3δ)

2Ti,j

Note that

√
ln(π2R2N/3δ)

2R
→ 0 as R→∞.

Now, let Ri
j := inf

{
R :

√
ln(π2R′2N/3δ)

2R′ ≤ ∆i
j/4 ∀R′ ≥ R

}
, then it must be that

min
{
µ̂i

arm(R)− µ̂i+1
1 (R), µ̂i−1

c̃i−1
(R)− µ̂i

arm(R)
}
≥ 2

√
ln(π2R2N/3δ)

2R
, ∀R > Ri

j (9)

From equation 9, it follows that on the good event ψ, Ti,j < Ri
j . We now derive an upper bound on Ri

j by letting

Ri
j

′
:=

⌈
max

{
n ∈ (1,∞) :

√
ln(π2n2N/3δ)

2n
= ∆i

j/4

}⌉

The maximum in the above equation picks the largest solution for n ∈ (1,∞) satisfying
√

ln(π2n2N/3δ)
2n = ∆i

j/4, while

ceil returning the smallest integer corresponding to n. We clearly see that Ri
j ≤ Ri

j
′.

Now, the exact expression for Ri
j
′ is given by Ri

j
′
=
⌈
− 1

aW−1(−ae−b)
⌉

where for y < 0, W−1(y) is the smallest
value of x such that xex = y. Note that here W−1(y) refers to the Lambert W function [20]

Note that while all these steps are followed from [20], due to the difference in the confidence intervals in our case

a =
∆i

j
2

16
and b =

ln

(
π2N

3δ

)
2

(10)

From [21], we also have

W−1(y) >
e

e− 1
ln(−y) (11)

Therefore, from equation 10 and 11, we have

Ti,j ≤ Ri
j

′

≤
⌈

e

e− 1

b− ln(a)

a

⌉
≤ e

e− 1

b− ln(a)

a
+ 1

=
16e

e− 1

1

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1

=
26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1

13

A PREPRINT - AUGUST 27, 2024

Claim 2. Conditioned on the good event ψ, the Alg1 takes no more than T I
δ (Alg1) pulls to the solve the representative

identification problem where

T I
δ (Alg1) ≤

m∑
i=1

ci∑
j=1

(
1{∆i

j ≥ ∆I}
26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1{∆i

j < ∆I}
26

∆2
I
ln

(
16π

√
N

3δ
∆2

I

)
+ 1

)

Proof of Claim 2. Given the number of arms (N), the error probability (δ), and the arm gap (∆i
j), from Lemma 2, we

know that for any arm j from cluster i, conditioned on the good event ψ, the maximum number of pulls for the arm by
Alg1 is no more than T I

i,j , where

T I
i,j =

26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1 (12)

However, as at every round R, the algorithm pulls all the unidentified arms, the total number of pulls by Alg1 will be
equivalent to the sum of the individual pulls. Now, from the definition of the Bottleneck gap (Refer Definition 2), we
know that by the time the arm corresponding to the bottleneck gap gets identified, the cluster requirement would be
satisfied resulting in the stopping of the algorithm. This leaves us with the 2 cases.

Case 1: When ∆i
j ≥ ∆I

In this case, the number of pulls T I
i,j for arm j from cluster i is

T I
i,j =

26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1 (13)

Case 2: When ∆i
j < ∆I For this case, as the algorithm terminates before identifying the identity of arm j from cluster

i, we have

T I
i,j =

26

∆2
I
ln

(
16π

√
N

3δ

∆I
2

)
+ 1 (14)

Finally, on summing up the number of pulls for every arm, we have

T I
δ (Alg1) ≤

m∑
i=1

ci∑
j=1

(
1{∆i

j ≥ ∆I}
26

∆i
j
2 ln

(
16π

√
N

3δ

∆i
j
2

)
+ 1{∆i

j < ∆I}
26

∆2
I
ln

(
16π

√
N

3δ
∆2

I

)
+ 1

)

A.3 Proof of Theorem 3:

The proof of Theorem 3, follows a similar approach to that of Appendix A.2. We start with defining the good event,
conditioned on which the rest of the proof follows.

ψ ≜
{
∀R ∈ Z,∀i ∈ [m],∀j ∈ [ci], |µ̂i

j(R)− µi
j | ≤ 2−(R+3)

}
(15)

Claim 3. Under A = Alg2, let µi
j be the empirical mean of arm j from cluster i after tR pulls, where tR is defined in

the line 2 of the Alg2. Given ψ be the good event defined in 15, we have PA
I (ψ) ≥ 1− δ

Proof of Claim 3. From union bounding, we have

PA
I (ψc) ≤

∞∑
R=1

m∑
i=1

ci∑
j=1

PA
I

[
|µ̂i

j(R)− µi
j | >

2−R

8

]
(16)

Now, on using the equations 2 and 16, and from line 2 of the Algorithm 2, we have

PA
I (ψc) ≤

∞∑
R=1

m∑
i=1

ci∑
j=1

6δ

π2R2N
(17)

14

A PREPRINT - AUGUST 27, 2024

≤
∞∑

R=1

6δ

π2R2
(18)

≤ δ (19)

Lemma 3. Given the good event, to identify the identity of arm j from cluster i, the Alg2, takes no more than T I
i,j pulls,

where T I
i,j is defined as

T I
i,j = max

(
32

∆i
j
2 ln

(
Nπ2

3δ

⌈
log2

(
1

2∆i
j

)⌉2)
, 128 ln

(
Nπ2

3δ

))

Proof of Lemma 3. Following the argument in Lemma 2, we know that an arm j from cluster i will be identified with
certainty at round R if 2−(R+3) = ∆i

j/4. Simplifying this further, we obtain:

R =

⌈
log2

(
1

2∆i
j

)⌉
(20)

Next, from the definition of tR and the value of R from equation20, we have

T I
i,j = ln

π2N

3δ

⌈
log2

(
1

2∆i
j

)⌉2
 2

2

log2

 1

2∆i
j

+5



≤ ln

π2N

3δ

⌈
log2

(
1

2∆i
j

)⌉2
 2

2

log2

 1

2∆i
j

+1

+5



=
128

4∆i
j
2 ln

π2N

3δ

⌈
log2

(
1

2∆i
j

)⌉2


=
32

∆i
j
2 ln

π2N

3δ

⌈
log2

(
1

2∆i
j

)⌉2


However, since there are no pulls in round 0, it’s essential to consider the total number of pulls at round 1 as part of the
worst-case bound. Therefore, for any arm j, from cluster i, the total number of pulls will be bounded by

T I
i,j = max

(
32

∆i
j
2 ln

(
Nπ2

3δ

⌈
log2

(
1

2∆i
j

)⌉2)
, 128 ln

(
Nπ2

3δ

))
Claim 4. Conditioned on the good event ψ, the Alg2 takes no more than T I

δ (Alg2) pulls to the solve the representative
identification problem where

T I
δ (Alg2) ≤

m∑
i=1

ci∑
j=1

(
1{∆i

j ≥ ∆I}max

(
32

∆i
j
2 ln

(
Nπ2

3δ

⌈
log2

(
1

2∆i
j

)⌉2)
, 128 ln

(
Nπ2

3δ

))

+1{∆i
j < ∆I}max

(
32

∆2
I
ln

(
Nπ2

3δ

⌈
log2

(
1

2∆I

)⌉2))
, 128 ln

(
Nπ2

3δ

))

Proof of Claim 4. The proof of Claim 4 follows a similar argument as that of Claim 2

B LUCB

The LUCB version for the representative identification problem is inspired from [12] and is stated in Algorithm 3. In
this algorithm, we have an intelligent sampling rule following a pull strategy based on the LCB and UCB of the arms.
We start this section, by defining the upper and lower confidence bounds.

15

A PREPRINT - AUGUST 27, 2024

Definition 3. (LCB and UCB of the arms): Given µ̂i
j(R) be the empirical mean of arm j from cluster i, we define

LCBi
j at round R as

LCBi
j(R) = µ̂i

j(R)−

√
ln(π2R3N/3δ)

2Ri
j

and UCBi
jat round R as

UCBi
j(R) = µ̂i

j(R) +

√
ln(π2R3N/3δ)

2Ri
j

where Ri
j is the number of times the arm j from cluster i till round R

Next, we identify the empirical gaps corresponding to every arm. These empirical gaps are defined in terms of the
confidence bounds and play an important role in identifying the potential arms to pull.

Definition 4. (Empirical Gap): For all clusters i ∈ [1, 2, · · · ,m], let LCBi(R) and UCBi(R) be

LCBi(R) = min(LCBi
1(R), · · ·LCBi

ci(R))

and
UCBi(R) = max(UCBi

1(R), · · ·UCBi
ci(R))

than the empirical gap ∆̂i
j for arm j from cluster i is defined as

∆̂i
j = max(UCBi

j(R)− LCBi−1(R),UCBi+1(R)− LCBi
j(R)

Algorithm 3 LUCB styled Algorithm for RAI
Input: cluster sizes c = (c1, c2, · · · , cm), required arms r = (r1, r2, · · · , rm), arm set N , error threshold δ
Output: O1, O2, · · · , Om

1: Initialize R← 0, A← N , and for i ∈ {1, 2, · · · ,m} set c̃i = ci
2: Sample every arm in A once
3: while |O1| ≠ r1 or |O2| ≠ r2 or · · · |Om| ≠ rm do
4: Increase R by 1
5: Partition A into clusters A1, A2, · · · , Am of sizes c̃1, c̃2, · · · , c̃m respectively, based on the empirical means
6: for i in [m] do
7: for arm in Ai do
8: Calculate LCBi

arm(R) and UCBi
arm(R)

9: if LCB(R)iarm > UCB(R)i+1
1 and UCBi−1

c̃i−1
(R) > LCBi

arm(R) then
10: if |Oi| < ri then
11: Add arm to Oi

12: end if
13: Remove arm from A
14: c̃i ← c̃i − 1
15: end if
16: end for
17: if Oi ̸= ri then
18: LCBi−1(R)← min(LCBi−1

1 (R), · · ·LCBi−1
ci (R))

19: UCBi−1(R)← max(UCBi−1
1 (R), · · ·UCBi−1

ci (R))

20: ∆̂i(R)← min(∆̂i
1, ∆̂

i
2, · · · ∆̂i

ci)

21: Pull the arms corresponding to LCBi−1(R),UCBi−1(R) and ∆̂i(R)
22: end if
23: end for
24: end while

The algorithm starts by sampling every arm once (Line 2) before using a smarter pull-based strategy. It then enters a
loop which continues until enough arms are identified from every cluster. While in the loop the algorithm first divides
all the arms into clusters based on their empirical (line 5). It then calculates the LCB and the UCB corresponding to
every arm, based on which the membership criteria is checked in Line 9. Finally, depending on whether the required
number of arms are identified or not, it than decides if there are any additional pulls required for that cluster.

16

A PREPRINT - AUGUST 27, 2024

Theorem 4. The LUCB version for the representative identification problem stated in Algorithm 3 solves the problem
with at least a probability of 1− δ

Proof of Theorem 4:

The proof of Theorem 4 follows a similar approach as that of Claim 1 with modified confidence bounds and an additional
summation over Ri

j going from 1 to R. Basically on taking the union bound and using the inequality stated in 1, we
have

P [Bad Event] ≤
∞∑

R=1

R∑
Ri

j=1

m∑
i=1

ci∑
j=1

2exp

(
−2Ri

j

(√
ln(π2R3N/3δ)

2Ri
j

)2)
≤ δ

17

	Introduction
	Problem Formulation
	Lower Bound
	Algorithms
	Numerical Case Studies
	Conclusion
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3:

	LUCB

